Invariants of the Rational Plane Quintic Curve and of any Rational Curve of Odd Order
نویسندگان
چکیده
منابع مشابه
Moving Curve Ideals of Rational Plane Parametrizations
In the nineties, several methods for dealing in a more efficient way with the implicitization of rational parametrizations were explored in the Computer Aided Geometric Design Community. The analysis of the validity of these techniques has been a fruitful ground for Commutative Algebraists and Algebraic Geometers, and several results have been obtained so far. Yet, a lot of research is still be...
متن کاملSignal detection Using Rational Function Curve Fitting
In this manuscript, we proposed a new scheme in communication signal detection which is respect to the curve shape of received signal and based on the extraction of curve fitting (CF) features. This feature extraction technique is proposed for signal data classification in receiver. The proposed scheme is based on curve fitting and approximation of rational fraction coefficients. For each symbo...
متن کاملThe Newton Polygon of a Rational Plane Curve
The Newton polygon of the implicit equation of a rational plane curve is explicitly determined by the multiplicities of any of its parametrizations. We give an intersection-theoretical proof of this fact based on a refinement of the KušnirenkoBernštein theorem. We apply this result to the determination of the Newton polygon of a curve parameterized by generic Laurent polynomials or by generic r...
متن کاملOn the Equations of the Moving Curve Ideal of a Rational Algebraic Plane Curve
Given a parametrization of a rational plane algebraic curve C, some explicit adjoint pencils on C are described in terms of determinants. Moreover, some generators of the Rees algebra associated to this parametrization are presented. The main ingredient developed in this paper is a detailed study of the elimination ideal of two homogeneous polynomials in two homogeneous variables that form a re...
متن کاملSTUDYING THE BEHAVIOR OF SOLUTIONS OF A SECOND-ORDER RATIONAL DIFFERENCE EQUATION AND A RATIONAL SYSTEM
In this paper we investigate the behavior of solutions, stable and unstable of the solutions a second-order rational difference equation. Also we will discuss about the behavior of solutions a the rational system, we show these solutions may be stable or unstable.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1915
ISSN: 0002-9947
DOI: 10.2307/1988744